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Abstract. In this article, a stochastic algorithm is briefly presented based on the 

one of second moment applied to a stochastic process model of second order. 

The design initially consisted in formulating the state equation model and the 

stochastic outputs, in order to apply the second moment using the internal prod-

uct of Martingale and the stochastic operators of the expectation, variance and 

covariance. The design results generated the formulas on: the covariances and 

the internal product variances to calculate the lumped estimation parameters, 

the error functional based on the mean quadratic error, the output variable as a 

function of the estimation parameters obtained. Furthermore, the recursive form 

was formulated in this design starting from the premise of the obtained results 

using the second stochastic moment. The main interest lays on the recursive 

form, because this is the one capable of being implemented in a digital system. 

In order to observe the precision and the convergence of the estimation parame-

ters and the output variables, Matlab-based figures are shown. 

Keywords: Linear stochastic systems, parameter estimation, second moment. 

1 Introduction 

The random input and output variables of a noisy process can be modeled by means 

of experimental data obtained from measurements carried out during time intervals T. 

These models are called Black Box Models (Fig. 1) [1, 2]. 

The Black Box Models are called this way, because their internal states are not 

known. One method to determine these unknown states starting from observable 

states are the so called methods of identified states based on the mean quadratic er-

ror  [3].  
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Fig. 1. Stochastic Estimation based on the second moment. 

The method relies on turning the unknown or non-measurable states 𝑥𝑘 into an 

identified state 𝑥̂𝑘 by means of the stochastic conditions of the observable state 𝑦𝑘  , 

based on the identified error (1): 

 𝛿𝑘 = 𝑦𝑘 − 𝑦̅𝑘 . (1) 

The error can lead to different methods of stochastic estimation and is hereby 

known as the innovation process. 

The error functional from the identification error 𝛿𝑘 using the second moment of 

probability, is defined as the expected value of the Euclidean norm of 𝛿𝑘 [4, 5, 6]: 

 𝐽𝑘(𝛿𝑘) = E {𝛿𝑘
𝑇

𝛿𝑘} = (𝑦𝑘 − 𝑦̅𝑘)𝑇 (𝑦𝑘 − 𝑦̅𝑘). (2) 

On the other hand, within the linear stochastic model, the observable state was repre-

sented by means of finite differences equations of 2nd order (3): 

 
d2f(y)

dy2 ≅  (f(y) − 2f(y(k − 1)) + f(y(k − 2)). (3) 

As it can be observed in (1) a system of this type has two delays and a negative 

sign in one of its parameters [7, 8, 9, 10, 11]. 

As we mentioned before, based on a second order state and a quadratic mean of 

second moment, the main purposes of this work are to design the estimation state 

based on this second moment, further on, to identify the stochastic output variable and 

finally, to determine the precision by means of the error functional. Additionally, the 

parameters and the variables of interest will be plotted.  

This article was structured in the following manner: abstract, second moment, sto-

chastic recursive algorithm, quadratic mean error functional, experiment, conclusions 

and bibliography. 

2 Simplified Stochastic Output Model. 

Like it was said in this introduction, a stochastic system based on noisy output and 

input measurements taken during a certain number of time intervals T, can adopt the 

following linear model in differences like the state equation (4) with stochastic output 

(5) [9, 10]: 
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 𝑥𝑘+1 = 𝑎1𝑥𝑘 + 𝑎2𝑥𝑘−1 + 𝑏𝑤𝑘 , (4) 

 𝑦𝑘 = 𝑐𝑥𝑘 + 𝑑𝑣𝑘. (5) 

Delaying (4) and (5) we have (6) and (7) respectively 

 𝑥𝑘 = 𝑎1𝑥𝑘−1 + 𝑎2𝑥𝑘−2 + 𝑏𝑤𝑘−1, (6) 

 𝑦𝑘−1 = 𝑐𝑥𝑘−1 + 𝑑𝑣𝑘−1. (7) 

Now, solving for the delayed state from (7) yields (8), and delaying (8) gives (9): 

 𝑥𝑘−1 = 𝑐−1𝑦𝑘−1 − 𝑑𝑐−1𝑣𝑘−1, (8) 

 𝑥𝑘−2 = 𝑐−1𝑦𝑘−2 − 𝑑𝑐−1𝑣𝑘−2. (9) 

Substituting (8) and (9) in (6) gives (10). Besides, substituting (10) in (5) yields 

(11): 

 𝑥𝑘 = 𝑎1𝑐−1𝑦𝑘−1 + 𝑎2𝑐−1𝑦𝑘−2 − 𝑎1𝑑𝑐−1𝑣𝑘−1 − 𝑎2𝑑𝑐−1𝑣𝑘−2 + 𝑏𝑤𝑘−1, (10) 

 𝑦𝑘 = 𝑎1𝑦𝑘−1 + 𝑎2𝑦𝑘−2 − 𝑎1𝑑𝑣𝑘−1 − 𝑎2𝑑𝑣𝑘−2 + 𝑏𝑐𝑤𝑘−1 + 𝑑𝑣𝑘. (11) 

And from (11) the noise is (12) leading to the simplified stochastic output (13): 

 𝑉𝑘 = −𝑎1𝑑𝑣𝑘−1 − 𝑎2𝑑𝑣𝑘−2 + 𝑏𝑐𝑤𝑘−1 + 𝑑𝑣𝑘 , (12) 

 𝑦̅𝑘 = 𝑎1𝑦𝑘−1 + 𝑎2𝑦𝑘−2 + 𝑉𝑘. (13) 

3 Stochastic Algorithm Based on the Second Moment 

The second moment is a technique used in probability theory to demonstrate that a 

random variable (RV) has a positive probability. Generally, the method consists in 

delimiting the probability that a RV fluctuates away from its mean. The method in-

volves a comparison of the second moment of the RV and the square of the first mo-

ment. Hence:  𝜇2 = 𝐸((𝑌 − 𝜇)2), where Y is the RV and μ is the mean [12]. 

From (13), we can obtain (14), that is (15), where 𝑎̅ = [𝑎1    𝑎2], and   𝑧𝑘̅−1 =
[𝑦𝑘−1: 𝑦𝑘−2 ]𝑇: 

 𝑦𝑘 = 𝑎̅𝑧𝑘̅−1 + 𝑉𝑘, (14) 

 𝑦𝑘 = [𝑎1    𝑎2][𝑦𝑘−1      𝑦𝑘−2 ]𝑇 + 𝑉𝑘, (15) 

Taking the second moment of probability from (14) for the variable 𝑧𝑘−1
𝑇  [13, 14], 

we have (16), that once solved gives (17): 

 𝐸{𝑦𝑘𝑧𝑘̅−1
𝑇 } = 𝑎̅𝐸{𝑧𝑘̅−1𝑧𝑘̅−1

𝑇 } + 𝐸{𝑉𝑘𝑧𝑘̅−1
𝑇 }, (16) 

 𝐸{𝑦𝑘𝑧𝑘̅−1
𝑇 } − 𝐸{𝑉𝑘𝑧𝑘̅−1

𝑇 } = 𝑎̅𝐸{𝑧𝑘̅−1𝑧𝑘̅−1
𝑇 }. (17) 

Here is the estimated parameter based on the second moment (18): 
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 𝑎̅𝑘 = (𝐸{𝑦𝑘𝑧𝑘̅−1
𝑇 } − 𝐸{𝑉𝑘𝑧𝑘̅−1

𝑇 })(𝐸{𝑧𝑘̅−1𝑧𝑘̅−1
𝑇 })+. (18) 

From (18), the stochastic estimated parameter is defined as a direct function to the 

covariance 𝑝𝑘, and inverse to the covariance 𝑞𝑘 as indicated in (19): 

 𝑎̅𝑘 ≜
𝑝𝑘

𝑞𝑘
, (19) 

where, 𝑎̅𝑘, 𝑝𝑘 , 𝑎𝑛𝑑 𝑞𝑘  are vectors of 1x2, 1x2 and 2x2 dimensions, respectively. 

To calculate the covariances pk and qk, the stochastic covariance is represented by 

the expectation of the internal products of the output variable, which is convoluted 

with the same output, but now with a delay, (20) [11]: 

 [𝑝̅1,𝑘      𝑝̅2,𝑘] = 𝐸({𝑦𝑘𝑧𝑘̅−1
𝑇 } − {𝑉𝑘𝑧𝑘̅−1

𝑇 }). (20) 

The stochastic expectation comes represented as a sequence from zero to k samples 

and is expressed by means of a sum [15] as it can be seen in (21): 

 [𝑝̅1,𝑘      𝑝̅2,𝑘] =
1

𝑘
[∑ ([  𝑦𝑖𝑦𝑖−1      𝑦𝑖𝑦𝑖−2] − [  𝑉𝑖𝑦𝑖−1      𝑉𝑖𝑦𝑖−2])𝑘

𝑖=0 ]. (21) 

Solving the sums from 0 to k samples, the two vectors of the covariances [13]  

𝑝1,𝑘  and 𝑝2,𝑘 , are obtained as in (22): 

[𝑝̅1,𝑘      𝑝̅2,𝑘] = 

1

𝑘2 [  𝑦𝑘𝑦𝑘−1 − 𝑉𝑘𝑦𝑘−1 + (𝑘 − 1)2𝑝̅1,𝑘−1   𝑦𝑘𝑦𝑘−2 − 𝑉𝑘𝑦𝑘−2 + (𝑘 − 1)2𝑝̅2,𝑘−1]. (22) 

While the covariance 𝑞𝑘 comes expressed as a quadratic matrix of 2x2 (23), in this 

case, the matrix turns out to be singular yielding into a pseudoinverse matrix. 

[
𝑞̅11,𝑘         𝑞̅12,𝑘

𝑞̅21,𝑘       𝑞̅22,𝑘
] = 𝐸{𝑧𝑘̅−1𝑧𝑘̅−1

𝑇 } 

 = 𝐸 {[
𝑦𝑘−1

𝑦𝑘−2
] [𝑦𝑘−1        𝑦𝑘−2]} = 𝐸 [

𝑦𝑘−1
2                    𝑦𝑘−1𝑦𝑘−2 

𝑦𝑘−2𝑦𝑘−1                         𝑦𝑘−2
2

   

]. (23) 

Solving for the expectation operator over the internal product, the covariances ma-

trix 𝑞𝑘 is obtained in (24): 

 [
𝑞11,𝑘         𝑞12,𝑘

𝑞21,𝑘       𝑞22,𝑘
] =

1

𝑘2  ∑ [
𝑦𝑖−1

2                    𝑦𝑖−1𝑦𝑖−2 

𝑦𝑖−2𝑦𝑖−1                         𝑦𝑖−2
2

   

]𝑘
𝑖=0 . (24) 

Now, by inserting the sums into each one of the terms within the pseudoinverse 

matrix, the result is (25). 

Developing the samples in each one of the sums from 0 to k samples leads to ob-

tain the sequential form of each one of the components of the pseudoinverse matrix 

(26) of the covariance 𝑞𝑘. 
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 [
𝑞̅11,𝑘         𝑞̅12,𝑘

𝑞̅21,𝑘       𝑞̅22,𝑘
] =

1

𝑘2  ([
∑ 𝑦𝑖−1

2   𝑘
𝑖=0                 ∑  𝑦𝑖−2𝑦𝑖−1

𝑘
𝑖=0  

∑ 𝑦𝑖−1𝑦𝑖−2                            
𝑘
𝑖=0 ∑ 𝑦𝑖−2

2𝑘
𝑖=0

   

]), (25) 

 [
𝑞̅11,𝑘         𝑞̅12,𝑘

𝑞̅21,𝑘       𝑞̅22,𝑘
] =

1

𝑘2  ([
𝑞11,𝑘         𝑞12,𝑘

𝑞21,𝑘       𝑞22,𝑘
]), (26) 

where the components of the pseudoinverse matrix are (27): 

 𝑞11,𝑘 = 𝑦𝑘−1
2 + (𝑘 − 1)2𝑞11,𝑘−1 ;  𝑞12,𝑘 =     𝑦𝑘−2𝑦𝑘−1 + (𝑘 − 1)2𝑞12,𝑘−1, (27) 

 𝑞21,𝑘 = 𝑦𝑘−1𝑦𝑘−2  + (𝑘 − 1)2𝑞21,𝑘−1;    𝑞22,𝑘 =  𝑦𝑘−2
2 + (𝑘 − 1)2𝑞22,𝑘−1. 

The equation (25) can be divided into two components as in (28): 

 (
1

𝑘2) ([
𝑦𝑘−1     

2              𝑦𝑘−1𝑦𝑘−2

𝑦𝑘−1𝑦𝑘−2                𝑦𝑘−2
2  

] + (𝑘 − 1)2 [
𝑞̅11,𝑘−1         𝑞̅12,𝑘−1

𝑞̅21,𝑘−1       𝑞̅22,𝑘−1
]). (28) 

The estimated parameter using the second moment expressed in (18), (21) and (26) is 

presented in (29): 

 𝑎̅𝑘 = [𝑎̅1,𝑘       𝑎̅2,𝑘] = [𝑝̅1,𝑘      𝑝̅2,𝑘] [
𝑞̅11,𝑘         𝑞̅12,𝑘

𝑞̅21,𝑘       𝑞̅22,𝑘
]

+

, (29) 

where 𝑎̅𝑘 and 𝑝𝑘 , are matrices of dimensions: 1x2, while 𝑞𝑘 is a matrix of dimension: 

2x2, and is also a pseudoinverse [16]. Then, the simplified stochastic output 𝑦̃𝑘 of 

(13) respect to the estimation parameter of second moment  𝑎̅𝑘 ends up being (30): 

 𝑦̅𝑘 = 𝑎̅1𝑦𝑘−1 + 𝑎̅2𝑦𝑘−2 + 𝑉̅𝑘. (30) 

4 Recursive Stochastic Estimation Algorithm 

From (19), the covariance 𝑝𝑘 can be obtained as the matrix (31) of 1x2 being a func-

tion of the covariance 𝑞𝑘. 

[𝑝̂1,𝑘      𝑝̂2,𝑘] =
1

𝑘
(  𝑦𝑘𝑦𝑘−1− 𝑉𝑘𝑦𝑘−1 𝑦𝑘𝑦𝑘−2 − 𝑉𝑘𝑦𝑘−2 

 +(𝑘 − 1)[𝑞̅1,𝑘−1𝑎̅1,𝑘−1    𝑞̅2,𝑘−1𝑎̅2,𝑘−1]). (31) 

Using (18) to calculate the estimation parameter, together with (22) and (25) we 

get (32), then, the stochastic output based on the recursive second moment is (33). 

 𝑎̂𝑘 = [𝑎̂1,𝑘       𝑎̂2,𝑘] = [𝑝̂1,𝑘      𝑝̂2,𝑘] [
𝑞̅11,𝑘         𝑞̅12,𝑘

𝑞̅21,𝑘       𝑞̅22,𝑘
]

+

, (32) 

 𝑦̂𝑘 = 𝑎̂1𝑦𝑘−1 + 𝑎̂2𝑦𝑘−2 + 𝑉̂𝑘. (33) 
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5 Functional of Mean Quadratic Error 

The mean quadratic error functional is a measurement to accurately know about the 

estimation parameter convergence by means of the errors between the normal parame-

ter and the one from the second stochastic moment [18]. Considering the parametric 

error 1 (34), parametric error 2 (35), error functional 1 (36), and error functional 

2 (37): 

 𝑒̅1,𝑘 = 𝑎1,𝑘 − 𝑎̅1,𝑘 , (34) 

 𝑒̅2,𝑘 = 𝑎2,𝑘 − 𝑎̅2,𝑘, (35) 

 J1̅,𝑘 =  (
1

𝑘2) [𝑒̅1,𝑘
2 + (k − 1)2𝐽1̅,𝑘−1], (36) 

 J2̅,𝑘 =  (
1

𝑘2) [𝑒̅2,𝑘
2 + (k − 1)2𝐽2̅,𝑘−1]. (37) 

The recursive form has utmost importance, because it generally gives proof of pre-

cision between the stochastic estimation parameters and the ones based on the second 

moment, which are meant to be implemented in a digital system. Considering parame-

tric error 1(38), parametric error 2 (39), error functional 1 (40), error functional 

2  (41). 

 𝑒̂1,𝑘 = 𝑎1,𝑘 − 𝑎̂1,𝑘, (38) 

 𝑒̂2,𝑘 = 𝑎2,𝑘 − 𝑎̂2,𝑘, (39) 

 Ĵ1,𝑘 = 𝐸{𝑒̂1,𝑘
2 } =  (

1

𝑘2) [𝑒̂1,𝑘
2 + (k − 1)2𝐽1,𝑘−1], (40) 

 Ĵ2,𝑘 = 𝐸{𝑒̂2,𝑘
2 } =  (

1

𝑘2) [𝑒̂2,𝑘
2 + (k − 1)2𝐽2,𝑘−1]. (41) 

6 Experiment 

The stochastic estimation algorithm based on the second moment is meant to be 

placed as an example. 

For the stochastic process the considered parameters are a1=0.1+i0.05i; a2=-

0.1+0.05; b=0.002; c=1; d=0.003. 

The identification of the system variable is presented by means of the Fig. 2 and 

Fig. 3.  Where the first fifteen samples of the output responses are matched and hence, 

tend to be confused with each other. For the recursive case, the identification of the 

output variables is achieved more quickly. The graphs of the experiment were carried 

out using Matlab [19, 20]. 

For a second stage the initial conditions of the recursive stochastic estimation algo-

rithm, for (26) and (27) are: pr1(2)=0.003; pr2(2)=0.001; anr1(2)=0.05; anr2(2)=0.05. 

Implementing this values, the result for the parameter estimation is seen in Fig. 4. 
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Fig. 2.  Stochastic simplified output variable identification. 

 

Fig. 3. Stochastic recursive outputs variable identification. 

 

Fig. 4. Estimated stochastic parameters based on the second moment 𝑎̅1 and 𝑎̅2 from Eq. (29) 

and recursive stochastic calculated parameters 𝑎̂1 and 𝑎̂2 from Eq. (32). 

To have a better idea of the convergence we use the error functional to measure the 

convergence level for both estimated parameters. The initial conditions for the mean 

quadratic error functional based on the second moment and the recursiveness, Eqs. 

(30) and (31) together with (34) and (35), respectively are the following: second mo-
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ment: J1(2)=0.0004; J2(2)=0.0004 and recursiveness: Jr1(2)=0.0004; Jr2(2)=0.0004. 

Results are shown in Fig. 5 and Fig. 6. 

 

Fig. 5. Graph 6. Error functional of second moment 𝐽1̅ in blue colour and 𝐽2̅ in red colour. Re-

mark: Here we deal with a Super Martingale. 

 

Fig. 6. Graph 7. Error functional of second moment 𝐽 ̅
1 in green colour and 𝐽 ̅

2 in sky-blue col-

our. Remark: Here we deal again with a Super Martingale. 

7 Conclusions 

The main objective of making the convergence of the two estimation parameters of 

states 𝑎̅𝑘, based on the estimation algorithm using the second moment, into the value 

lost by the parameters of the linearly modelled stochastic states was fulfilled. 

The found estimation parameters for the second moment were only able to locate 

the convergence, when they were subjected to a sign inversion, just as it is described 

in (1). The convergence range of the estimation parameters did work only within 0 < 

𝑎̅𝑘  < 1. The paths of the estimation parameters were always of the Super Martingale 

form.  

The fireproof took place, when the estimation parameters of this proposed algo-

rithm were replaced at the output variable and it was noticed that the experimentally 

measurable random data was perfectly compared with the a priori data. 
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Due to the previous acknowledgements, we come up with the conclusion that the 

estimation algorithm based on the second moment applied to a random experimental 

model and represented by a linear stochastic second order model worked out properly. 

Also, it was possible to design and simulated experiment with a recursive estimator 

model 𝑎̂𝑘, starting with the estimator based on the second moment, whose objective in 

the future is to be placed at the disposal of whomever wants to implement it on a digi-

tal system by only having experimental data of random systems. 
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